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Abstract: Molecular dynamics simulations are presented for condensed-phase electron transfer (ET)
systems where the electronic polarizability of both the solvent and the solute is incorporated. The solute
polarizability is allowed to change with electronic transition. The results display notable deviation from the
standard free energy parabolas of traditional ET theories. A new three-parameter ET model is applied,
and the theory is shown to accurately model the free energy surfaces. This paper presents conclusive
evidence that the traditional theory for the free energy barrier of ET reactions requires modification.

I. Introduction

The study of condensed-phase electron transfer (ET) reactions
is essential in chemistry, biology, physics,1 and in the emerging
field of molecular electronics.2 A considerable amount of work
has been invested in the development of ET theory, a very
notable contribution to which is by Marcus.1a,c,3Through both
theoretical and experimental explorations, this theory has been
applied to a multitude of systems.1,3,4 The Marcus formulation
connects ET activation with fluctuations of the electronic levels
of the donor and acceptor linearly coupled to a solvent thermal
bath characterized by Gaussian statistics. This consideration
leads to the picture of intersecting parabolas in which the ET
activated state is achieved at the crossing point. The curvatures
of the two parabolas are equal as a consequence of the Gaussian
statistics of the energy fluctuations.5

The issue of whether the free energy surfaces are parabolic
has been actively discussed in both experimental and theoretical
literature in recent decades. Experimentally, the problem is
addressed by measuring the energy gap law, that is, the
dependence of the activation barrier on the ET driving force
(the free energy gap between the minima of ET surfaces).6-10

The results of experimental studies can be summarized as
follows: (1) The energy gap dependence goes through a
maximum, in excellent agreement with the prediction of the
Marcus theory. (2) The bell-shaped dependence is, however,
asymmetric with usually a steeper slope in the normal region
of ET. One explanation proposed for this effect is preferential
transitions to excited vibrational states in the ET inverted region.
(3) The energy gap law switches from a bell-shaped form in
the region close to the maximum to a linear dependence on the
driving force far away from the maximum point as is usually
explained within vibronic models.4b,11
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None of the above observations contradict the Marcus theory,
requiring only an accounting for the quantum skeletal vibrations
within the donor-acceptor complex in addition to the classical
solvent fluctuations.11f There are, however, two types of
experiments which call for a closer scrutiny of the basic
assumptions embodied in the Marcus picture. The first observa-
tion, first noticed by Mataga and co-workers,7 indicates a
substantial asymmetry of energy gap laws between charge-
separation (CS) and charge-recombination (CR) reactions.
Indeed, the combined effect of classical solvent fluctuations and
quantum skeletal vibrations does create Franck-Condon factors
that are asymmetric relative to their maxima. However, the
combination of the Gaussian statistics of nuclear fluctuations3

with the Poisson statistics of quantum skeletal vibrations11

predicts that the absorption and emission bands should be related
by mirror symmetry,11 thus resulting in identical energy gap
laws for CS and CR reactions. In fact, symmetry between
absorption and emission lines is rarely observed in steady-state
optical experiments.12 (For more discussion of this issue, see
the first paragraph of section VI.) The second category of
experiments is in the time-resolved domain. Recent observations
of the time-resolved dynamics of absorption and emission optical
bands indicate substantial temporal changes in the inhomoge-
neous optical width,13 in contrast to the prediction of constant
width in the Marcus picture. The origin of both static (energy
gap law) and dynamic (time-resolved spectroscopy) effects may
be understood either through the solvent effect13d or through
the change of normal-mode frequencies of the donor-acceptor
complex.13h,14 It remains a significant experimental challenge
to separate these two effects.15

Theoretically, the problem of the shape of the ET free energy
surfaces has been addressed predominantly by estimating
possible effects of nonlinear solvation on the thermodynam-
ics16,17and dynamics16b,18of charge transfer. Nonlinear solvation

may cause the Marcus picture to break down via two possible
scenarios: (1) due to non-Gaussian statistics of the fluctuations
of solvent modes coupled to electronic levels of the donor and
acceptor, and (2) through a generally nonlinear dependence of
the solute-solvent interaction potential on molecular solvent
coordinates. Computer simulations have been employed to
calculate the shapes of ET free energy surfaces.16,17The common
setup in simulations modeling ET includes a donor-acceptor
complex, immersed in a molecular solvent, with a charge
distribution changing diabatically with electronic transitions.
Certain deviations from parabolic free energy surfaces have been
observed in systems with strong solute-solvent coupling by
direct calculations of the free energy surfaces16b-d,17b-d and from
the dynamic response.18b,d However, these nonlinear solvation
effects are commonly much smaller than distortions of the equal-
curvature parabolas seen in experiment.7,13 The consensus that
seems to arise in the field is that nonlinear solvation is not
capable of producing a significant effect on the free energy
surfaces of realistic systems, which are often composed of bulky
organic molecules dissolved in dense molecular solvents.

Something that is lacking in most theoretical models of ET
is a recognition of the fact that not only does the distribution
of the electronic density change with electronic transitions, but
also does the self-energy of the electronic subsystem of the
donor-acceptor complex. This change in self-energy arises from
the difference in the polarization of the electronic cloud of the
donor-acceptor complex by the solvent in the reactant and
product states. It is responsible for the ability of the solute
electronic density to readjust to external perturbations generated
by the nuclear subsystem. Physically, this effect results in a
difference in the linear and higher order polarizabilities of the
two ET states and/or a difference in the extent of electronic
delocalization between the donor and acceptor units. Both effects
lead to a significant distortion of the free energy surfaces that
far exceeds the nonlinear solvation effect.19-22 The goal of this
work is to study nonlinear distortions of the ET free energy
surfaces arising from the solute electronic effect, that is, the
effect due to a varying solute electronic polarizability. The
explicit computer simulations carried out in this study indicate
that the Marcus picture of parabolic surfaces can seriously break
down in realistic systems when the electronic polarizability is
allowed to vary with the progress of the ET reaction from the
reactant to product states.

II. Traditional Electron Transfer Theory

Modern ET reaction theory dates back to the 1950s, the most
important developments commencing with Marcus’ seminal
1956 papers.3a,b Beginning with these articles, and extending
through work in the following two decades, Marcus developed
the following elegant picture.
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An ET reaction is, by definition, characterized by a change
in the electron configuration of the reacting species. According
to the Franck-Condon principle, this change occurs fast enough
that the nuclei are effectively frozen during the transfer. Hence,
the surrounding solvent molecules are suddenly in an unstable
configuration, and they must reorient to find equilibrium with
the new solute characteristics. Additionally, the electronic
transition is accompanied by vibronic transitions that also lead
to internal energy conversion after the transfer. Marcus termed
the collective free energy for these processes as the reorganiza-
tion energy,λ.3a-e

If an electronic transition occurs while the ET complex is in
an equilibrium state (an endothermic process), energy must be
provided, through, for example, the absorption of light. In the
absence of photoexcitation, the transition is made possible
through fluctuations in the surrounding solvent molecules. For
a successful ET reaction, a nonequilibrium solvent configuration
is reached at the classical transition state such that the potential
energies of the reactant and product systems are equal for the
current nuclear coordinates, and a zero energy Franck-Condon
transition occurs.3f Here, the solvent provides the driving force
for the reaction.

If a molecule undergoes an electronic transition through
photoexcitation, the subsequent relaxation can be observed
spectroscopically with the Stokes shift,23 which is the difference
between the maximum absorption and fluorescent emission
energies

The validity of this relationship relies on the linear response
approximation utilized by Marcus, which predicts that a change
in the charge of the reacting species will result in a linearly
proportional change in the dielectric polarization of the solvent
medium.3h Under these conditions, the energies of reorganization
after a transition from either reactant to product or product to
reactant are the same. Using the same argument, one also
easily finds the reaction free energy∆F spectroscopically,
through the mean energy of the absorption and emission
maxima23b

These linear response consequences may be more easily
understood from diagrams depicting the free energies of such
electronic transitions, as in Figure 1.

A hallmark of Marcus theory is that the activation free energy
of an ET reaction,∆Fq, was found to be related toλ and∆F
by a simple parabolic expression3h,k

The activation barrier is the crossing point of the two ET free
energy surfaces plotted against a reaction coordinate representa-
tive of the charge transfer from the donor to the acceptor.
Because the eigenvalues of the reactant and product electronic
states become equal at the transition state, the gap,X, between

diabatic electronic energies at an instantaneous nuclear config-
uration provides a useful reaction coordinate:3h,k,24

where the subscripts 1 and 2 denote the initial and final ET
solute energy states, respectively. The free energy invested in
obtaining a particular energy gapX defines the ET free energies
(with the F1(X) minimum set at 0):3k,23b

The crossing point of the two resulting surfaces corresponds to
the activation free energy of the ET reaction,∆Fq (eq 3), the
vertical distance along one surface from one minimum to the
other minimum is the reorganization energy,λ, and the vertical
separation between the curve minima is the reaction free energy,
∆F. The horizontal distance between the minima is 2λ, and the
curvature of each parabola is (2λ)-1. These features are shown
with two example free energy surfaces in Figure 2.

(23) (a) Marcus, R. A.J. Chem. Phys.1963, 38, 1858. (b) Marcus, R. A.J.
Phys. Chem.1989, 93, 3078. (24) Warshel, A.J. Phys. Chem.1982, 86, 2218.
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Figure 1. Simplified diagram depicting the dynamics of a photoinduced
electron transfer reaction. The vertical transitions take place instantaneously
on the nuclear time scale (Franck-Condon). The Marcus linear response
approximation relates the Stokes shift and mean transition energy to the
ET parameters.

Figure 2. Example of Marcus theory free energy surfaces calculated from
eqs 5 and 6. For these curves, the input parameter values areλ ) 25 kcal
mol-1 and∆F ) -5 kcal mol-1. Note the equal curvatures of the parabolas.
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The true diabatic free energy surface, free from approxima-
tion, can be calculated from the following expression:24

wherePi(X) is the exact equilibrium probability distribution of
X in the diabatic statei, â ) 1/kBT, and i is 1 or 2.Pi(X) is
found rigorously in the classical limit by integrating the delta
function of X over phase spacedΓ

whereEi are the instantaneous energies of the system composed
of the donor-acceptor complex and the solvent. In practice,
this must be approximated through discrete functions via, for
example, molecular dynamics (MD) or Monte Carlo (MC)
simulations, wherePi(X) is found by “binning” the reaction
coordinate data.16a,17b

Both Marcus theory input parameters may be readily evalu-
ated from simulation results:

or through experimental data, as previously discussed. The
consistency of the description also requires that the second
moments are equal

This relation corresponds to the requirement of having equal
spectral widths of emission and absorption lines originating from
classical solvent fluctuations. The symbol〈...〉i above refers to
the canonical average over the distribution function defined in
eq 8.

The exact diabatic free energy curves are also exactly related
by the expression5,24

This linear free energy relationship means that the two diabatic
free energy surfaces must have the same local curvature at any
given value ofX. This concept is one of fundamental importance
in ET reaction theory.5

III. Deviations from Marcus Theory

In the linear solvation approximation, the electronic diabatic
energy in the donor and acceptor states,Ii + Ciq, depends
linearly on q, the collective solvent mode driving ET. If the
thermal fluctuations ofq are described by Gaussian statistics,
the free energy of creation of a nonequilibriumq in pure solvent
is a quadratic function ofq with the force constantκ: (1/2)κq2.
The total energy of the donor acceptor complex and the solvent
is then a bilinear function ofq:

where Ii is the intrinsic vacuum energy of diabatic statei.
Because the force constantκ is equal for states 1 and 2, the
energy gapX ) E2 - E1 is a linear function ofq. However, a
more general expression for the system energy is given by11b,25,26

Now the effective force constant is allowed to vary between
states, hence the subscript onki. Using this expression for the
electronic energies, the energy gap becomes bilinear inq if
k1 andk2 differ.

If the collective force constantki driving ET does vary
between states 1 and 2, significant departure from Marcus theory
may be observed.7a,b,e,16b-d,19,20Physically, nonlinear coupling
effects arise when the energy of polarization of the electronic
density of the donor-acceptor complex by the nuclear sub-
system is different in the initial and final states. The diabatic
electronic energiesEi are then nonlinear functions ofq.20-22

When only the linear polarizability of the electronic density of
the donor-acceptor complex is included, the solute-solvent
coupling is bilinear inq, resulting in state-dependentki.19

Matyushov and Voth demonstrated substantial variation in the
curvature of the free energy functions in such systems19,26 by
deriving free energy surfaces analytically for a polarizable
solute/solvent complex as modeled by Drude oscillators. They
further considered a number of experimental systems where such
variations may be observed.20b,c

Figure 3 shows an example of these analytical diabatic free
energy surfaces. The fine curves (constant solute polarizability)
display Marcus-like curvatures. The bold curves, corresponding
to ET solute polarizability variation from 20 to 40 Å3, display
obvious variation in curvature and are anharmonic. In this case,
the change in activation free energy upon treatment of solute
polarizability variation is almost 20 kcal/mol, which translates

(25) (a) Nitzan, A.; Persson, B. J.J. Chem. Phys.1985, 83, 5610. (b) Skinner,
J. L.; Hsu, D.J. Phys. Chem.1986, 90, 4931. (c) Berg, M.J. Chem. Phys.
1999, 110, 8577.

(26) Matyushov, D. V.; Voth, G. A.J. Chem. Phys.2000, 113, 5413.

Figure 3. Example analytical ET free energy surfaces from ref 19. The
fine curves correspond to a constant solute polarizability of 20 Å and follow
Marcus theory curvature. The bold curves describe varying solute polar-
izability with R1 ) 20 Å3 andR2 ) 40 Å3 and demonstrate a clear deviation
from Marcus theory curvature. In both systems, the solute permanent dipole
moment varies from 0 to 15 D with the ET transition. The free energy
curves are shifted vertically to the level of zero driving force to illustrate
the asymmetry between the reactant and product states in the case when
the polarizability changes with the transition.
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to orders of magnitude change in the reaction rate constant. Note
that the apparent curvatures of the two diabatic curves in Figure
3 for the case of variable ET solute polarizability are very
different, even though the local curvature is the same according
to eq 12.19

IV. A New Three-Parameter Model

To accommodate a more realistic treatment of the diabatic
free energy curves for ET systems (where variation inki is
included), Matyushov and Voth developed a new three-
parameter ET model,26 and the reader is referred to the original
paper for more details on the theoretical development. This
model, called the “Q-model” due to the inclusion of quadratic
coupling, incorporates a new parameterR, which quantifies the
ET force constant variation. The fundamental expression for
the diabatic free energy curves is

whereI1(X) is the first-order modified Bessel function, and the
relevant parameters are defined below. Under most conditions,
this expression can be significantly simplified,26 as will be
shown later.

The Q-model is fully defined by three parameters. Equation
15 contains, however, five parameters:Ri, λi, andX0. They are
not independent due to the relations

which reduce the number of independent parameters to three.
The reorganization energiesλi are given in terms of the thermal
fluctuations of the reaction coordinate around the free energy
minima

The Q-model reorganization energies can be evaluated from
either simulation data or data from spectroscopy experiments.
Now the two reorganization energies can no longer be assumed
to be equal, and eqs 1 and 2 are no longer valid. An alternate
and more precise definition of the reorganization energies is
through the absorption/emission bandwidths, orâp2〈δω2〉1/2 and
âp2〈δω2〉2/2, also called the second spectral cumulants.

The three input parameters areλ1, λ2, and∆F. The parameters
in eq 15 can then be calculated from eqs 16, 17, and the relation

This interdependence implicitly highlights the linear free energy

relationship between the two ET surfaces. The parameters of
the Q-model are also related to the first two spectral moments

where, for simulation data

Equation 21 indicates that the mean spectral energy and the
driving force are unequal in the Q-model. The difference
between these two parameters which can be measured inde-
pendently is represented in terms of spectroscopic observables
as follows

For most reaction coordinate values (2âx|Ri|3λi|X-X0| .
1), the Q-model free energy equation reduces to a simpler form

If |Ri| . 1, λ1 = λ2 ) λ, and eq 25 reduces to

which is equivalent to the Marcus expressions (eqs 5 and 6). In
the limit that|X - X0| . λi|Ri|, the Q-model formula becomes

that is, the dependence on the reaction coordinate becomes
linear. Because the magnitudeX ) 0 defines the activated state,
the limiting behavior of eq 27 yields the linear energy gap law.10

Example free energy surfaces calculated from the three-
parameter model equations are shown in Figure 4. The way in
which the parameters in the Q-model can be defined from
experimental data is defined in ref 26, but this is not the main
focus of the present paper.

V. Simulations of Polarizable Solute/Solvent Systems

The primary goal of the present paper is to test the accuracy
of the new three-parameter ET model for realistic systems.
Molecular dynamics simulations were therefore conducted in a
condensed-phase system with both a polarizable ET solute and
a polarizable solvent.

(A) Simulation Details. All simulations were performed with
the DL_POLY 2 molecular dynamics simulation package.27 The
DL_POLY FORTRAN code was modified to include sampling

(27) Smith, W.; Forester, T. R. 1996 CCLRC Daresbury Laboratory, Daresbury,
Warrington, U.K.

e-âEi(X)+âF0i ) ( 1

1 - e-âλiRi
2) x λi|Ri|3

|X - X0|
e-â(|ri||X-X0|+λiRi

2)I1(2âx|Ri|3|λi|X - X0|) (15)

R2 ) R1 + 1 (16)

λ1R1
3 ) λ2R2

3 (17)

λi )
â〈(X - 〈X〉i)

2〉i

2
) âp2〈δω2〉i/2 (18)

X0 ) ∆F -
λ1R1

2

R2
(19)

R1 )
(p∆ωst + λ2)

λ1 - λ2
(20)

∆F ) pωm -
λ1R1

2R2
2

(21)

p∆ωst ) 〈X〉1 - 〈X〉2 (22)

pωm )
〈X〉1 + 〈X〉2

2
(23)

pωm - ∆F )
λ1(λ1 - λ2)(p∆ωst + λ2)

2(p∆ωst + λ1)
2

(24)

Fi(X) ) F0i + (x|Ri||X - X0| - |Ri| xλi)
2 (25)

Fi(X) ) F0i +
(X - ∆F - λ)2

4λ
(26)

Fi(X) ) F0i + |Ri||X - ∆F + λ1

R1
2

R2
| (27)
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of the reaction coordinate. All simulations had a canonical
ensemble via Nose-Hoover thermostating28 at a temperature
of 300 K, and the smooth particle mesh Ewald method29 was
used to evaluate the electrostatic forces.

The shell model30 was used to model the polarizability of
both the solute and the solvent molecules. In this model, outer
shell electrons are represented by a point charge connected to
the core atom via a harmonic spring. The shell particle is given
a very small mass so that thermal energy transferred to the nuclei
from shell motion will be minimal.30c To remain on an adiabatic
potential energy surface, the shell particles should be at
equilibrium at each simulation time step. This effect is ap-
proximated by using a small shell mass and a short time step.30c

The harmonic spring is atom centered; on average, the shell
position will be the same as the core atom position, and the
two form one unit. The shell potential energy is given by

For a molecule containingn shell particles each of equal charge
qsh and force constantk, the polarizability is given by

In all simulations, water was used as the solvent. The solvent
molecules consist of one shell particle centered on the oxygen
atom. The O-H bond was constrained with SHAKE.31 The
H-O-H angle was constrained by introducing an H-H
intramolecular bond, also held rigid with SHAKE.

(B) Umbrella Sampling. Often the horizontal energy gap
between the diabatic free energy surfaces in an ET system is
on the order of tens or hundreds of kcal/mol. Molecular

dynamics must be extended to sample over such ranges within
a realistic amount of computer time. A useful method to
accomplish this is umbrella sampling.32a In umbrella sampling,
a biasing potential is added to the system Hamiltonian to force
the system into states and configurations that are normally
visited very infrequently. Two independent types of umbrella
sampling were employed in this study, the free energy perturba-
tion (FEP) method and the harmonic umbrella potential (HUP)
method. In FEP, the reactant Hamiltonian is transformed into
the product Hamiltonian through a linear combination:16a,17a,32b

and the force on each atom is

Typically a series ofλumb values is chosen, and a separate
simulation is performed for eachλumb. Each simulation is termed
a “window”.

In the HUP method, the biasing potential is a harmonic
function of the reaction coordinate,17d and the Hamiltonian
becomes

wherek is an effective force constant, and∆e0 is the point along
the reaction coordinate where sampling is constrained to occur.
The force on each atom is then

where i is 1 or 2 depending on which potential surface the
system is on. Again, several windows are used, each with a
different value for∆e0.

The weighted histogram analysis method (WHAM)33 provides
an algorithm to produce a single converged free energy curve
for a series of umbrella sampling windows, regardless of the
type of umbrella potential used. This method was used for all
simulation results.

(C) Polarizable Solute Simulations.The solute contains six
carbon and six hydrogen atoms in a hexagonal ring geometry,
with a shell particle attached to a dummy atom centered within
the ring. The parameters used for the solute are given in Table
1, and those of the solvent are given in Table 2. The solute has
dipole moments of 3.6 and 9.8 D for the initial and final states,
with corresponding polarizabilities of 4.43 and 8.86 Å3. It must
be emphasized that these simulations were not intended to model
any real property of benzene. The solute in this study was chosen
only to have a realistic change in dipole moment and electronic
polarizability.

Twenty-one FEP umbrella windows were used, and data were
collected for∼50 ps in each window, at a time step of 0.4 fs.
In the HUP simulations, 21 windows were used for the initial
state, and 16 were used for the final state. Data were collected
for ∼50 ps in each window, at a time step of 0.4 fs. The
simulation results were compared with the Q-model by using

(28) Hoover, W. G.Phys. ReV. A 1985, 31, 1695.
(29) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen,

L. G. J. Chem. Phys.1995, 103, 8577.
(30) (a) Dick, B. G.; Overhauser, A. W.Phys. ReV. 1958, 112, 90. (b) Fincham,

D.; Mitchell, P. J.J. Phys.: Condens. Matter1993, 5, 1031. (c) van Maaren,
P. J.; van der Spoel, D.J. Phys. Chem. B2001, 105, 2618. (d) Rick, S.
W.; Stuart, S. J. InReV. Comput. Chem.; Lipkowitz, K. B., Boyd, D. B.,
Eds.; Wiley-VCH: Hoboken, New Jersey, 2002; Vol. 18.

(31) Allen, M. P.; Tildesley, D. J.Computer Simulations of Liquids; Oxford:
Clarendon Press, 1989.

(32) (a) Torrie, G. M.; Valleau, J. P.J. Comput. Phys.1977, 23, 187. (b) DeBolt,
S. E.; Pearlman, D. A.; Kollman, P. A.J. Comput. Chem.1994, 15, 351.

(33) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J.
M. J. Comput. Chem.1992, 13, 1011.

Figure 4. Example of Q-model free energy surfaces. The analytical
Q-model solution results in a discontinuity atX0. ET free energies exist in
the region to the right ofX0 whenR1 > 0 (Fi(X) f ∞ for X < X0), and the
region to the left ofX0 whenR1 < -1 (Fi(X) f ∞ for X > X0).

Esh ) 1
2
kr2 (28)

R )
nqsh

2

k
(29)

Humb ) (1 - λumb)H1 + λumbH2 ) H1 + λumb(∆E) (30)

fumb(x,y,z) ) f1(x,y,z) + λumb(f2(x,y,z) - f1(x,y,z)) (31)

Humb ) H + 1
2
k(∆E - ∆e0)

2 (32)

fumb(x,y,z) ) fi(x,y,z) - k(∆E - ∆e0) × (f1(x,y,z) - f2(x,y,z))
(33)
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the following prescription: First, the average energies for each
diabatic state,〈X〉1 and〈X〉2, were found by averaging over the
simulation data from theλumb ) 0.0 andλumb ) 1.0 windows.
The Stokes shift and mean energy were then calculated through
eqs 22 and 23, respectively.

The prescription for matching the analytical curves to data
calls26 for calculatingλ1 andλ2 with eq 18, and then using the
two calculated parameters together in the Q-model equations
(e.g., eqs 17, 20, etc.). This may produce an incongruous fit,
because the calculation of reorganization energies through eq
18 can be inaccurate, especially when the two reorganization
energies differ substantially. The consistency criterion of eq 17
was used iteratively to improve the fit quality. The parameter
λ1 was first calculated via eq 18 by averaging over the data
from theλumb ) 0.0 simulation. The parameterλ2 was likewise
found using theλumb ) 1.0 data. Through eqs 16, 17, and 20,
a polynomial expression can be obtained forR1 in terms ofλ2:

Only one of the solutions to this equation is physically
significant. Using thisR1, theλ2 from simulation data, and eq
17, we calculated a secondλ1. A more accurateλ1 is then found
by taking the average of the two producedλ1 values.

Again, through eqs 16, 17, and 20, a polynomial expression
can be obtained forR1, but this time in terms ofλ1:

As with eq 34, only one of the solutions to this equation will
be physically significant. By substituting the averagedλ1 in eq
35, we found that the resultingR1 will have higher accuracy.
The parameterR2 was then calculated from eq 16, andλ2 was
calculated from eq 17. The remaining parameters were then
found through eqs 19 and 21. By applying the Q-model in this

manner, we assured that none of the crucial relationships (eqs
12, 16, 17, 19, 21) are violated. The simplified Q-model
expression, eq 25, was then used for the fitting. The results for
the FEP and HUP simulations are shown in Figures 5 and 6,
respectively.

The Q-model fits the simulation curves very well in the
important regions along the reaction coordinate (between the
minima). The Q-model curves begin to deviate from the
simulation curves far from the state 2 minimum. Toward the
reactant side away from the state 1 minimum, the simulation
curves develop a steep ascent, but not the discontinuous jump
to infinity predicted by the Q-model. Most importantly, however,
these results illustrate for the first time the size of the possible
deviations from the standard Marcus theory prediction when
the change in solute electronic polarizability is treated in a
realistic system. The new Q-model, implemented as outlined
in detail in the beginning of this section, gives a good description
of the large deviations from the traditional theory.

VI. Conclusions

Two types of experiments are commonly used to describe
the thermodynamics and dynamics of electronic transitions in
liquid and solid solvents: rates of thermally activated reactions

Table 1. Solute Model Parametersa

parameter value parameter value parameter value

rC-C 1.4 MC 11.98 MH 1.0
MDu 0.1 MSH 0.1 εC-OSH

LJ 0.1955

εC-O
LJ 0.0955 εCSH-OSH

LJ 0.36854 εCSH-O
LJ 0.21059

σC-OSH

LJ 3.1861 σC-O
LJ 3.1861 σCSH-OSH

LJ 3.1861

σCSH-O
LJ 3.1861

state 1 state 2 state 1 state 2 state 1 state 2

qC1 0.400 0.634 qC4 0.134 -0.100 qH 0.400 0.400
qC2 0.400 0.633 qC5 0.133 -0.100 qSH -4.0 -4.0
qC3 0.400 0.633 qC6 0.133 -0.100 kSH 1200.0 600.0

a The masses are in amu, the bond lengths are in Å, the energies are in
kcal mol-1, the force constants are in kcal mol-1 Å-2, and the charges are
in electron charge units.

Table 2. Water Solvent Parametersa

parameter value parameter value parameter value

rOH 0.9572 rHH 1.5136 MO 15.9
MH 1.0 MSH 0.1 q0 1.2
qH 0.4 qSH -2.0 kSH 885.0
εO-OSH

LJ 0.21059 εO-O
LJ 0.05265 εOSH-OSH

LJ 0.36854

σO-OSH

LJ 3.1650 σO-O
LJ 3.1650 σOSH-OSH

LJ 3.1650

a The units are the same as those in Table 1.

(2λ2 - p∆ωst)R1
2 + 3λ2R1 + λ2 ) 0 (34)

(p∆ωst - 2λ1)R1
3 + (3p∆ωst - 3λ1)R1

2 +
(3p∆ωst - λ1)R1 + p∆ωst ) 0 (35)

Figure 5. FEP simulation (circles), Q-model (bold lines), and Marcus theory
(dashed lines) surfaces for the system with varying solute polarizability.
The Marcus theory result (calculated from eqs 5 and 6) assumes a constant
solute polarizability. Each simulation curve has 300 data points (bins).

Figure 6. HUP simulation results and Q-model surfaces for the benzene
system with varying solute polarizability. Each simulation curve has 300
data points (bins).
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(ET kinetics) and optical spectroscopy. These two types of
measurements are essentially complementary, the former mea-
suring the tails of the system distributionPi(X) (eq 8) over the
reaction coordinate (activated transitions), and the latter measur-
ing the distribution close to the reactant and product minima.
Both types of measurements provide evidence that the traditional
Marcus picture requires modification. ET kinetics show asym-
metry between CS and CR energy gap laws, while optical
spectroscopy data often show asymmetry between absorption
and emission optical bands. (That is, the absorption and emission
bands may be asymmetric due to the vibronic progressions of
each, but the traditional theory predicts a perfect mirror
symmetry between the two bands, and this is often not the case.)

The present study is a step toward the development of a new
conceptual framework allowing a consistent explanation of
seemingly unlinked measurements from ET kinetics7-10 and
steady-state12 and time-resolved13 spectroscopy. The analytical
development preceding this paper19,20,26,34 predicts marked
deviations from the picture of two equal-curvature parabolas
when the electronic subsystem of the donor-acceptor complex
is coupled nonlinearly to the nuclear subsystem. The key
distinction of the new concept from the Marcus picture is the
notion that an electronic transition results not only in a change
of the distribution of charge in the donor-acceptor complex,
but also in a change of the polarization energy of the donor-
acceptor complex by the system (solute and/or solvent) nuclei.
This polarization energy may include linear and higher order
polarizabilities. The present study focuses on the effect of linear
solute polarizability that varies with the electronic transition.

The polarization energy of the solute depends quadratically
on the electric field of the solvent when the expansion in the
field strength is truncated at the linear polarizability term.35 The
charge distribution of the solute is linearly coupled to the solvent
electric field in the dipolar approximation. The combination of
these two factors leads to the analytical Q-model producing
nonparabolic free energy surfaces of ET.19,26 The qualitative
results of the model explain the principal experimental observa-
tions conflicting with the Marcus picture: the asymmetry
between the CS and CR energy gap curves and the asymmetry
between the absorption and emission band-shapes (Figures 5-7).
In addition, the Q-model predicts a linear energy gap law. The
latter is often observed,10 but is traditionally explained within
vibronic models.11

This paper shows that the results of the Q-model coincide
very closely with free energy surfaces obtained from large-scale
umbrella sampling MD runs on a realistic liquid-state system.
The simulations were performed by using shell models for both
the solute and the solvent.30 In this setup, the polarization energy
of the solute is quadratic in the solvent electric field, while the
solute-solvent interaction includes both dipolar and higher-
order multipolar interaction terms. The latter aspect may be
responsible for deviations between the analytical theory and MD
simulations in the region of reaction coordinates close to the
boundaryX0 in the Q-model calculations (Figures 5 and 6). The
analytical Q-model includes only the dipolar component of the
solvent field. With quadratic solute-solvent coupling, there is
no analytical solution for the dipolar solvent field that can create

the resonance between the donor and acceptor electronic levels
necessary for electron tunneling when the energy gap exceeds
some critical valueX0. This result limits the range of the energy
gap fluctuations to a one-sided band. In actual simulations,
fluctuations of nondipolar polarization of the solvent, as well
as coupling of higher solute multipoles to gradients of the
solvent field, can offset the fluctuation boundary or eliminate
it completely. This intriguing problem warrants further studies.
It should be noted that a very asymmetric energy gap distribution
with a cutoff similar to the prediction of the Q-model has been
recently observed in simulations of naphthalene in acetonitrile
by Cichos et al.36

The Q-model can be fully parametrized by measurements of
the first two spectral moments of the absorption and emission
lines. In computer simulations, the spectral moments are
replaced by the moments of the reaction coordinate calculated
from the data from the windows of the reactant and product
minima. These moments were used in Figures 5 and 6 to
construct analytical curves. Comparing the analytical results to
direct MD simulations in this way displays the predictive power
of the Q-model. Figure 7 shows the corresponding equilibrium
distributions in the reactant and product states. They correspond
to the solvent-induced component of inhomogeneously broad-
ened line-shapes in optical experiments. The complete vibronic
envelope in a condensed-phase solvent can be obtained by
convoluting the distributionsPi(X) shown in Figure 7 with gas-
phase vibronic band-shapes.20b,cThe inverse process of decon-
volution of experimental optical lines leads to a new formulation
of the band-shape analysis of steady-state19,20b,c and time-
resolved34 CT optical bands. Figures 5 and 6 indicate that both
the energy barrier and the free energy gap obtained from spectral
moments and/or the band-shape analysis of optical lines
according to the Marcus model can be significantly inaccurate.
The reason for the distinction in the driving force is that the
latter calculated according to the Q-model (eq 21) is not equal
to the mean optical transition energy as predicted by the Marcus
model (eq 2). This distinction may be used for a direct
experimental verification of the Q-model because the difference
of the spectral mean energy and the thermodynamic driving
force is predicted to be related to a combination of the first and
second spectral moment according to eq 24. A general conclu-(34) Matyushov, D. V.J. Chem. Phys.2001, 115, 8933.

(35) Liptay, W. InModern Quantum Chemistry, Part II: Interactions; Sinanogˆlu,
O., Ed.; Academic Press: New York, 1965. (36) Cichos, F.; Brown, R.; Bopp, Ph. A.J. Chem. Phys.2001, 114, 6824.

Figure 7. Equilibrium distributions in the reactant and product states from
FEP simulations and the Q-model.
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sion arising from the present work is that the standard theory
of ET free energies requires significant modification when
nonlinear solute-solvent coupling is present, for example, when
the electronic polarizability varies significantly between the
reactant and product ET states.
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